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§ Integrated modeling: discrete continuous model 
embedded in a Fast Fourier Transform mechanical 
solver

§ Virtual characterization
– Connecting with Xray Diffraction
– Connection with TEM

Outline
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A FFT based Formulation: 

~v = M
⇣

~

f

⌘

(1)

where M is chosen such that dislocation motion reproduces is consistent with both exper-
imental observations and atomistic simulations, and ~

f is the Peach-Koehler force arising
from the total stress �tot acting at position ~x along the dislocation line defined as:

~

f(~x) =
⇣
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tot(~x) ·~b
⌘

⇥~

t (2)

where ~b is the Burgers vector of the dislocation line and ~

t its unit line tangent. In the nodal
DDD approach, whereby dislocation lines are discretized into segments connected to one
another through dislocation nodes, dislocation motion is determined upon evaluation of the
nodal forces ~

F

i

acting at each dislocation node i that are assembled as ~

F

i

=
P

j

~

f

ij

, where
~

f

ij

denotes the force on segment ij acting at node i, and where the summation is performed
on all nodes j connected to i. For each dislocation segment ij defined between end nodes at
position ~x

i

and ~x

j

and with Burgers vector ~b, ~

f

ij

is obtained by integration of expression
(??) along the segment length:
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where N
i

denotes the interpolation function associated with node i.
In equations (??) and (??), the total stress �

tot must account for the stress fields gen-
erated by the presence of all dislocations within the medium, and for the applied loading.
Specifically, in the case of an heterogeneous medium, the elastic interactions between the
dislocation lines and the di↵erent elastic phases give rise to image forces on dislocations that
must be accounted for in �

tot. To this end, the DDD-FFT method developed in [? ] and
based on the Discrete-Continuous Model (DCM) proposed by Lemarchand and co-workers
[? ? ] is extended to the case of heterogeneous elasticity.

2.2. Eigenstrain-based spectral formulation

Following the DCM approach, the DDD-FFT framework relies on an eigenstrain-based
formulation in which dislocations are considered as plate-like inclusions, as illustrated in
figure ??. With this approach, a dislocation line – defined by its Burgers vector ~b and its
defect surface ~

S with unit normal ~n – produces a plastic strain [? ]:

✏p
ij

(~x) = �1

2
(b

i

n
j

+ b
j

n
i

) �(~S � ~x) (4)

where �(~S � ~x) denotes the three-dimensional Dirac delta function that is zero everywhere
except on surface ~

S, and which accounts for the displacement discontinuity [~u] = ~

b across
~

S. With this description, the mechanical state throughout the medium V can be determined
by solving the elasto-plastic constitutive equation subjected to the mechanical equilibrium:

4

The plastic strain due to dislocation 
motion is treated as an eigenstrain

HeteroDDDFFT/InclDisloc.pdf

Figure 1: (a) Schematic of a dislocation loop L defined as the boundary of a cut introduced over a surface ~

S

within a continuous material. A dislocation with Burgers vector ~b is introduced when the crystal in domain
S

+ above surface ~

S is slipped by an amount b = k~bk in the direction of ~b/k~bk with respect to the crystal
in domain S

� below surface ~

S, thereby generating a displacement jump [~u] = ~

b across surface ~

S. (b) In
the eigenstrain theory, dislocations are considered as plate-like Eshelbian inclusions of thickness t. Surface
~

S corresponding to the slip plane of the dislocation is defined by the plane formed by the Burgers vector ~b

and the line direction ~

t such that ~n =
~b⇥~t
k~b⇥~tk

. For a dislocation, t corresponds to the inter-atomic distance

associated with its slip plane.

(

�(~x) = C(~x) : (✏(~x)� ✏

p(~x))

div �(~x) = ~0
8~x 2 V (5)

where the plastic strain distribution ✏

p(~x) directly results from the motion of dislocation
lines and is considered as a constant input of the formulation at each simulation time step.
Following the DDD-FFT method introduced in [? ], problem (??) can be e�ciently solved
using a full-field spectral method based on Fourier expansions of the mechanical fields. In
contrast with the homogeneous formulation presented in [? ], the sti↵ness tensor C(~x) is
a function of the spatial position ~x. Consequently, a direct application of the framework
presented in [? ] for homogeneous elasticity would not be beneficial since an expansion of the
constitutive law (??) in Fourier series would involve a convolution in the Fourier space. To
circumvent this issue, Moulinec and Suquet [? ] proposed a polarization scheme in which a
reference medium with sti↵ness tensor C0 is introduced. When applied to the elasto-plastic
problem defined in (??), the constitutive law can be rewritten as:

�(~x) = C

0 : ✏(~x) + ⌧ (~x) (6)

⌧ (~x) = �C(~x) : ✏(~x)�C(~x) : ✏p(~x) (7)

�C(~x) = C(~x)�C

0 (8)

where ⌧ (~x) denotes the heterogeneous polarization tensor and �C(~x) is a forth-order tensor
quantifying the deviation in the elastic properties associated with each material point ~x

from that of the reference medium. Using the small strain compatibility equation ✏
ij

=
1

2

(u
i,j

+ u
j,i

), relation (??) subjected to the mechanical equilibrium can be written as:

C0

ijkl

u
k,lj

(~x) + ⌧
ij,j

(~x) = 0 8~x 2 V (9)

When the mechanical fields are periodic in all spatial directions – i.e. when periodic
boundary conditions are prescribed to the simulation volume V –, the partial di↵erential
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equations in (??) can be conveniently expressed in the Fourier space using the Fourier
transforms defined as follows: for ~x the spatial coordinate in the real space R3 and ~

⇠

the frequency of the reciprocate Fourier space F(R3), the Fourier transforms bg(~⇠) of any
integrable function g(~x) over R3 is defined by:

bg(~⇠) = F (g(~x)) =

Z

R3

g(~x)e�i~x·~⇠d~x

g(~x) = F�1

⇣

bg(~⇠)
⌘

=
1

(2⇡)3

Z

R3

bg(~⇠)ei~x·
~

⇠d~⇠ (10)

where F and F�1 denote the forward and inverse (or backward) Fourier transform operators,
i =

p�1 denotes the complex number, and where quantity bf denotes a function expressed
in the Fourier space, whose reciprocate function is denoted f in the real space. In the
Fourier space any spatial derivative of a function expressed in the real space becomes a
simple multiplication in the Fourier space, i.e.:

F (g
,j

(~x)) = i⇠
j

bg(⇠) (11)

Equation (??) is simply obtained by integration by parts using relations (??). With this,
relation (??) can be readily expressed in the Fourier space as:

C0

ijkl

⇠
l

⇠
j

bu
k

(~⇠)� b⌧
ij,j

(~⇠) = 0 (12)

where bu and b

⌧ denote the Fourier transforms of the displacement field ~u and the polarization
tensor ⌧ defined in the real space, respectively. Rewriting equation (??), the displacements
in the Fourier space are obtained as:
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i

(~⇠) = bG0
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(~⇠)b⌧
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(~⇠) = i⇠
l

bG0
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⇥

C0

kjil

⇠
l

⇠
j

⇤�1

8~⇠ 6= ~0 (13)

where bG0

ik

(~⇠) denotes the periodic Green’s function associated with the reference medium and
expressed in the Fourier space. Using relations (??), (??) and the compatibility equation,
the solution for the strain field is given by:

b

✏(~⇠) = �b�
0

(~⇠) : b⌧ (~⇠)

= �b�
0

(~⇠) : \
�C : ✏(~⇠) + b�

0

(~⇠) : \C : ✏p(~⇠)

8~⇠ 6= ~0,

b

✏(~0) = E

(14)

where E is the macroscopic imposed strain, and b�
0

is the modified Green’s operator whose
expression in the Fourier space is obtained by symmetrization of the second order spatial
derivative of the Green’s function, i.e. bG0

ij,kl

(~⇠) , as:

b�0

ijkl
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⇠
j

⇥

⇠
m
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⇠
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o

sym

8~⇠ 6= ~0 (15)
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The system is equilibrated and 
constitutively related

One can rewrite the constitutive 
relationship

One obtains the Lippmann 
Schwinger equation

Which is solved in Fourier space

Bertin et al. MSMSE 2015, Bertin et al. , Lemarchand et al.1998

The polarization tensor 
can include SFTS, 
Plasticity
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Concurrent multi-scale

The FFT based DDD tool allows for a 
treatment of anisotropic elasticity

Highly computationally efficient (i.e. 
runs on a laptop with GPU card)

A conjugate gradient algorithm
allows for the simulations of 
plasticity in heterogeneous 
media 

Convergence is reached even 
with 105 stiffness contrasts
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Discretize 
Dislocations

Calculate 
Forces

Solve 
EOM

Time 
Integration

Update 
Positions

The FFT algorithm accelerates the 
computation of forces on segments. 

àComputational times are not very 
sensitive to dislocation content.
à Heterogeneous problems can be 

solved (PX, SFTS)
à Anisotropic problems have no extra 

cost

Polycrystal simulations to large 
densities

Coupling between mechanics and 
chemistry (vacancy accumulation 

during irradiation)

Internal stress assisted cross-slip 
in Al-Cu

On the fly diffraction peak 
calculations
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§ Multiple copper polycrystalline samples were 
pulled in tension at a strain rate 105 s-1

§ 64x64x64 point Fourier grid
§ Grain sizes were varied from ~150 to 500 nm
§ No grain boundary transmission

Revisiting the grain size effect

Grain boundaries are taken as 
impenetrable obstacles

σ =σ 0 +
k
d

Predicted : 14 MPa
Reported: 20 MPa

Predicted : 0.148 MPa.m1/2

Reported: 0.14 Mpa.m1/2

Hansen et al., Scripta Mat 2004 
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§ Integrated modeling: discrete continuous model 
embedded in a Fast Fourier Transform mechanical 
solver

§ Virtual characterization
– Connection with TEM
– Connecting with Xray Diffraction

Outline
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Line Profile Analysis: Wilkens approach

Re

9
Balogh et al. 2012

Asymmetric peaks in work of Groma et al.
Effect of dislocation contrasts Ungar et al.

Scattering intensity
 
I κ( ) = C exp i κ


Rj −


Rl( )( )

j ,l=2

N

∑

 
I s( ) = exp iπ sn( )C

V
dn3 dr3 exp 2πig u r + n / 2( )− u r − n / 2( )( )( )∫∫

 
A n( ) = 1

V
dr3 exp 2πig u r + n / 2( )− u r − n / 2( )( )( )∫

 
A n( ) = exp −2π 2n2g2 < εg,n

2 >( )

< εg,n
2 >= − b

2π
⎛
⎝⎜

⎞
⎠⎟
2

πρ f η( )

Scattering intensity is proportional to the Fourier Transform of

Warren Averbach relation

Wilkens

η = 1
2
exp −1 / 4( ) L Re
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Line Profile Analysis: Wilkens approach

Asymmetric peaks in work of Groma et al.
Effect of dislocation contrasts Ungar et al.

Restrictedly random distributions:

The crystal can be subdivided in subvolumes of equal 
size in which:

-All have same dislocation densities.
-Which have a null net dislocation polarity.
-All dislocations are infinitely long straight and parallel
-Within each volume the dislocation distribution is 
random

 
A n( ) = exp −2π 2n2g2 < εg,n

2 >( )

< εg,n
2 >= − b

2π
⎛
⎝⎜

⎞
⎠⎟
2

πρ f η( )

Warren Averbach relation

Wilkens

Re

η = 1
2
exp −1 / 4( ) L Re

10
Balogh et al. 2012
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Peak profile construction

To create representative 
peaks, several (i.e. 8-20) 
dislocation structures with 
same densities are generated.

11
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1.e12
2.5e12
5.e12
5e13
1e14

Accuracy of line profile analysis as a function of dislocation 
density: relatively homogeneous distributions

Evolution Ratio of density predicted 
from line profile analysis over 

density produced by dislocation 
dynamics

Sample relative densities

12

Balogh et al. Acta Mater 2012
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Accuracy of line profile analysis as a function of dislocation 
density: Inhomogeneous distributions

1.e12
2.5e12
5.e12
1.e13
5e13
1e14

Sample relative densities Evolution of predicted dislocation 
density ratio as a a function of 
generated dislocation densities

A modest departure from 
homogeneous distribution 

significantly increases the error of 
line profile analysis

13

Balogh et al. Acta Mater 2012
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§ Integrated modeling: discrete continuous model 
embedded in a Fast Fourier Transform mechanical 
solver

§ Virtual characterization
– Connecting with Xray Diffraction
– Connection with TEM

Outline
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50
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nm

Numerical FIB

X

Y

Z

Initial microstructure 
containing a relaxed 
dislocation 
configuration

First FIB pass 
(~100nm) followed by 
relaxation. 
Dislocations can exit 
the system

Second FIB pass 
(~100nm) followed by 
relaxation. 
Dislocations can exit 
the system
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Virtual dislocation microstructure
ü 64x64x64 FFT 

grid
ü Sim. Box=500nm
ü Heterogeneous 

elasticity
ü Mg@273K

§ Relaxation under 
local dislocation 
stress field

PBCxyz

Σave=0
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Setup for Modelling of FIB milling

PBCxy+F
Sz

ü 4 consecutive 
milling passes

ü Different virtual 
dislocation 
microstructure 

Ø PBC = Periodic boundary 
condition

Ø FS = Free surface

50
0 

nm

279. 
nm

Σave=0
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FIB milling Pass [01-04] –
Total dislocation density 

Relaxed 
dislocation 

microstructure

Total 
dislocation 

density 
decreases by 

~15.6 %
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FIB milling Pass– Dislocation density on each 
slip system 

Relaxed 
dislocation 

microstructure

Changes 
in slip 
system 
activity 
(Eg: B2 
and P3) 
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FIB milling Pass [01-04] – Total 
junction density and junction length 

Relaxed 
dislocation 

microstructure

~16.3 % 
increase in 

total junction 
density
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No FIB FIB

Stress relaxation due to FIB (S23)
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